Int. J. Heat Mass Transfer. Vol. 21, pp. 1221-1228
© Pergamon Press Lid. 1978.  Printed in Great Britain

0017-9310/78/0901-1221 $02.00/0

INSTABILITY OF FREE CONVECTION FLOW OVER A HORIZONTAL
IMPERMEABLE SURFACE IN A POROUS MEDIUM

C.T.Hsu
Department of Civil Engineering

PING CHENG*
Department of Petroleum Engineering

and

G. M. Homsy
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, U.S.A.

(Received 27 July 1977 and in revised form 23 January 1978)

Abstract—A linear stability analysis is made to determine the conditions marking the onset of longitudinal
vortices in free convective flow in a porous medium adjacent to a horizontal heated surface with a prescribed
wall temperature. The basic state is assumed to be the steady two-dimensional buoyancy-induced boundary-
layer flow which is characterized by a non-linear temperature profile. The transverse velocity component of
the basic flow as well as the streamwise dependence of the basic flow and temperature fields are taken into
consideration when deriving the three-dimensional perturbation equations for the secondary flow. The
resulting variable coefficient eigenvalue problem is solved numerically, and the amplitudes and phase angles
of the disturbances, as well as the streamlines and isotherms of the secondary flow at the onset of instability
are shown. The effect of wall temperature distribution on the critical Rayleigh number and its associated
wave number are discussed.

NOMENCLATURE
a, wave number ;
A, constant in wall temperature relation;
C, superposition constant ;
IA dimensionless base state stream function;;
F, dimensionless disturbance stream function;
k, wave number ;
K, Darcy permeability;
m, exponent on wall temperature relation;
D, pressure ;
Ra,, local Rayleigh number;
t, time ;
T, temperature ;
u, Darcys’ velocity component in x direction;
v, Darcys’ velocity component in y direction;
7, Darcys’ velocity vector;
w, Darcys’ velocity component in z direction;
X, coordinate in downstream direction;
¥ coordinate normal to bounding surface;
z, coordinate tangent to bounding surface.
Greek symbols
o, effective thermal diffusivity ;
B, coefficient of thermal expansion ;
¥ volumetric heat capacity of the fluid to that
of the saturated porous medium;
U, fluid viscosity ;
n, similarity variable ;

*On sabbatical leave from the Department of Mechanical
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o, dimensionless temperature ;
P, stream function;
o, growth constant ;

0, fluid density.

I. INTRODUCTION

IT HAs been established that when a fluid layer is
heated from below, the presence of the buoyancy force
component normal to the surface gives rise to vortex
instability under critical conditions. The appearance of
longitudinal vortices (or rolls) have been observed by
Chandra [1], as well as by Akiyama, Hwang and
Cheng [ 2] for forced convection between differentially
heated parallel plates, and by Sparrow and Hussar [3]
as well as by Lloyd and Sparrow [4] for natural
convection on inclined heated surfaces. Motivated by
these experimental investigations, a number of linear
stability analyses have recently been performed to
study the conditions marking the onset of longitudinal
vortices in both free [5-8] and forced [9-11] con-
vection in a fluid layer heated from below.

The occurrence of streamwise oriented vortices in a
porous medium between two parallel inclined plates
heated from below has been observed by Bories and
Combarnous [12] who also performed a stability
analysis which shows that the onset of secondary flow
in the form of longitudinal vortices occurs when
Racos ¢ > 4n?, where ¢ is the inclined angle of the
plates with respect to the horizontal and Ra is the
Rayleigh number based on the distance between the
plates. In Bories and Combarnous’ analysis, both the
temperature and velocity profiles of the basic flow are
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linear functions of distance normal to the plates and
independent of streamwise direction.

It is the purpose of this paper to study the related
problem of onset of vortex instability in {ree con-
vection flow in a porous medium adjacent to a heated
horizontal surface where the prescribed wall tempera-
ture is a power function of distance. The basic
undisturbed state is assumed to be the steady
buoyancy-induced boundary layer flow which is char-
acterized by a non-linear temperature profile { 13]. The
full three-dimensional disturbance equations are sim-
plified on the basis of the so-cailed “bottling effects™.
ie. the disturbances at the onset of instability arc
contained within the boundary layer of the basic flow
[6]. The resulting eigenvalue problem is solved
numerically by the fourth-order Runge-Kutta method
incorporated with Kaplan filtering [14,15] to main-
tain the linear independence of the two eigenfunctions.
The amplitudes and phase angles of the disturbances,
as well as the streamlines and isotherms of the
secondary flow at the onset of instability are shown.
The effects of wall temperature distribution on the
critical Rayleigh number and its associated wave
number are discussed.

I1. LINEAR STABILITY ANALYSIS

Consideration is given to the problem of free
convection in a porous medium adjacent to an im-
permeable heated surface with the prescribed wall
temperature of the form T, (x)= T, +Ax". where T,
and T, are temperatures at the wall and at infinity ; 4
and m are constants which are positive and real. The
coordinates of the problem are depicted in Fig. | where
x and z are the coordinates that lie on the horizontal
plane and v is the vertical coordinate pointing outward
toward the porous medium. If we assume that (1) the

/O/ /77 X
Tw = T (x<0) Tw > Teo (x20)

F1G. 1. Definition sketch.

convective fluid and the porous medium are every-
where in local thermodynamic equilibrium; (2} pro-
perties of the fluid and the porous medium, such as
thermal conductivity, specific heats, viscosity, and
permeability are constant ; (3) the Boussinesq approxi-
mations are employed, and (4) Darcy’s law is applic-
able, the governing equations for convective heat
transfer in a porous medium are:

V=0, {1

Eg = —Vp'—p, Bg(T=T,), (2)
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o
where the subscript “».”
infinity.

A linear stability analysis will now be made by
decomposing the temperature, velocity. and pressure
distribution into basic undisturbed quantities and
infinitesimal disturbed quantities as

denotes the conditions at

Tixovizy = To{x v) + i v,
plx vz = polay) +pylNan o)
wlx,vzot

= UglN y) 1, Lx 3 o), 4)
rixayoi) = volx, v) b el n),

WX vz = wylx, oo,

where the three dimensional disturbances are denoted
by the subscript “1” and the two dimensional basic
quantities are denoted by the subscript “07”. It will be
assumed that the undisturbed basic state is that of
steady two-dimensional buoyancy-induced boundary
layer flow whose solution is given by Cheng and
Chang [13] to be of the form

To(x,y) =T, + Ax"t,(n), {

W

and
Wolx,y) = a(Ra,)' " fu(n), .
1:3 {6}
n=(Ra) v
where Ra, = Kp .gp(T,— T, jx/ux 15 the Rayleigh
number in a porous medium, and y is a similarity
variable. As shown in [ 13]. the dimensionless tempera-
ture 0,(n) and stream function f,{#) are solutions of

. m—=2 -
fo +mly + " s nty =0, {7)
R

1+

Lom+b
(hyg—mly fo + - . fally = 0O, (8)

with boundary conditions given by
000} = 1, fol0) =0, 9}

Do) =0, fts )= 0. (10)

where the primes on basic flow quantities indicate
derivatives with respect to .

Substituting equation (4) into equations {1}-(3).
subtracting out the governing equations for the basic
flow and linearing, we have

Quy Cry o Owy

ox Ty Toos T 0. o
NI‘\Q = “j\* (12)
N}‘(l, = -, gBT, (13)
!{I‘z’x - 4{1’; {14)
7 (‘(;:1[1 + ug (‘:%1 + (T + iy (:('«;_Ié} 0y (%0
—y \‘\Tl ; ”:7:‘ + ‘(le ) (15)
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where all terms arising from the transverse velocity
component of the basic flow as well as the x-
dependence of the basic flow and temperature fields
have been retained.

From the related work of vortex instability in free
convection about an inclined plate, it has been shown
that small disturbances at the onset of instability are
confined within the boundary layer of the basic flow
because of the transverse inward-directed velocity
component of the basic flow which entrains fluid on
the plate. This has been termed the “bottling effect” by
Haaland and Sparrow [6]. If the assumption of
bottling effects are invoked, some of the terms in
equations (11)-(15) can be neglected. This can be
shown by first converting the equations in dimension-
less form and then expressing the resulting equations
in terms of the stretched boundary layer coordinates of
the basic flow. We want to give the highlights of this
argument, because it is subtle and does not seem to
have been carefully detailed in the literature. The
dimensionless forms of (11)-(15) are

%‘%% Mo, (16)
%%=—m, 17)
aa”;: v;+RT, (18)
%?:—M, (19)

- %2;1 +5;y§ +IT oo

where R is a Rayleigh number based upon a fictitious
length which is of no consequence in the resulting
similarity solution. For the base state, we have for large
R [13], variations that are asymptotically

a 1/3 a . a .

6—y ~R ¥ A ~1; v,

Now since vy < 0, any small disturbance will be
convectively held (“bottled”) on the plate, so that for
vortex-like disturbances with wave length of the same
scale as the base state thermal depth, we have for
bottled disturbances,

~R'"3; ug~ R,

Equations (16)—(19) become
gl;l +%+R‘”3 661;1 -0, (16a)
5_;;_1 - —u, (17a)
Rus% = —u,+RT, (18a)
R‘”%% = —w,. (19a)

HM.T.—D

1223

We wish to use (16a)—(19a) to estimate the relative
orders of the convective terms in equation (20).
Equation (16a) establishes that v; ~ w, for a con-
vective roll, and (19a) establishes P; ~ R~ 3w;. Now
a key point is that if there is an O(1) x-variation in
disturbance quantities, then equation (17a)implies u,
~ R™1'3p,. There is necessarily this x-dependence
through the variable coefficients in equation (20)
involving the base state. Thus P, = P(x,Y,Z), and u,
# 0. The convective terms in equation (20) have the
estimates

et
5w
“‘662) R—m”l%%’
v1%~R”3vl%.

The first two terms are evidently of the same order. The
next two estimates depend upon the ratio of v, to Ty,
which is in fact related to the actual solution to the
eigenvalue problem. We have retained all four terms in
what follows. The important conclusion from (16a)
and (17a)—(19a) is that

61)1 éwl

0z

to lowest order, implymg the existence of a disturbance
stream function defined such that

o
2z YT oy

(16b)

vy = 1)
We revert back to dimensional variables in order to
properly develop the similarity solution. Equations
(12)—(15) in terms of stream function are

Oy _ 82‘/’1
0z 0xdy’ @)
I3 oy, Py, 5T1
K(ayZ + azz = aoﬂg (23)
R or,_av,em
7o THoax T dy  Yox oz oy
8T, 8*T,
“(ayz 5 ) @9
where
—_ & 2/3 ¢+
Up —(;>(Rax) fo(ﬂ)
and

0= = (2 a2 2 g |

It should be noted that the term u,(8T,/0x) is retained
in equation (24) since although 0T;/dx is small,
ug(6T,/0x) is of the same order of magnitude as other
convective terms in equation (24).
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Hwang and Cheng [5] and Haaland and Sparrow
[6] have neglected the term 1,(3T,/0x) in their ana-
lyses of onset of stability in a viscous fluid because all
the disturbances are assumed to be independent of x.
In fact the disturbance has a weak x dependence, which
coupled with the strong convective base flow u,, leads
to retention of this term at lowest order.

Experimental evidence shows that small distur-
bances in the form of longitudinal vortices are periodic
in the spanwise direction. Thus, we assume that the
three-dimensional disturbances are of the form

1/11 — lﬁ(x,y)e"“: + rrl‘ (25(1)
uy = dlx,y)e’ s (25b)
T, = Tx,yye= ", (25c¢)

where a is real and represents the spanwise periodic
wave number of the disturbances and o is the growth
factor. It is difficult to prove that o is real, i.e. that the
onset is stationary. However, we assume here, in
analogy with many other convective instabilities, that
¢ is real. Substituting equations (25) into equations
(22)—(24), the equations for neutral stability are

jai = Y (26)
oxey
o, Q) iKp, pgaT
v = BPwpga 27
<5y2 “ i 2
T .
ot|jﬁ > —al TJ
ay
oT  oT oT, | ,eT,
= Uy 5"; + Uy = +u (?\, b l[/’“({“’* (28)

To recast equations (26)-(28} in dimensionless
form, the following dimensionless quantities will now
be defined

ax . W T

k = (Rgﬁiﬁ’ F = '_"'“—‘7"""1 @ . (29)

= v

where F and © are functions of # only. Equations
(26)-(28) in terms of the dimensionless variables are

(D? —k*)F = —Ra'*k®, (30)
(D?—k¥)O
i m+1 o
= (Ra,)'"*0kF —«—?»—_IOD(~)+mfo®
Ra) '3[ (m-2
La;i{ : L"’Tl ne(;+m007
x [(m—2mD?*F +(2m—1)DF], (31)
with the boundary conditions given by
F(0)=0(0) =0, (32)
F(oc) = 0(w) =0, (33)

where D = d/dn is the differentiation of the disturbed
quantities with respect to 5. Note that in developing
these equations we have eliminated 4 in favor of the
stream function via equation (26). Substitution of
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equation (30) into equation (31) leads to

. 5.
T DDk

—mfg(D? —k>)F + (Ra, ) 0,k F

(D?—k*)PF +

+ i [( ﬂgg)n%ntmﬁo i
x [(m—2)D?*F 4 (2m -1 JDF} =0, (34)
with its boundary conditions given by
F(0) = D?F(0) = 0, (35)
F(oo) = D2F(x) = . (36)
For a given value of m and &, equation (34) with
homogeneous boundary conditions {35) and (36)

constitutes an eigenvalue problem where Ra, can be
regarded as the eigenvalue.

1il. NUMERICAL SOLUTION OF THE
EIGENVALUE PROBLEM

The eigenvalue problem can best be solved numeri-
cally by integrating equation (34) inward from 5 —
(the edge of the boundary layer of the base flow) to 5
= 0 (at the wall). To start the numerical integration at
n — o, asymptotic solutions for equation (34) will
now be obtained. It is noted that equation (34) at large
n is simplified to the constant coefficient type and its
solutions are of the form

F(;; ~ e ky, .

F(}D ~¢ “la, S k7Y :"77‘

F‘;” ~ e]"’"ﬂ
F(;t) ~ c[u, +ia? + k4! ~‘|,;“

37

where a,, = fy(oc)(m+ 1)/6 is a positive constant and
N 18 some large value of #. Since the two exponential
growing modes will not satisfy the boundary con-
ditions at infinity, they must be discarded, and only the
two decaying modes, F' and F® will be
retained. Using F{!' = e " and its derivatives as
starting values at some large value of n (taken as 7,
= 8 in the present study), equation (34) is integrated
inward numerically by the fourth-order Runge-Kutta
method to n = 0. The numerical solution thus ob-
tained is denoted by F'X(n). Similarly, a second
numerical solution is obtained for F*(n) using F
= ¢~ lar @ I and its derivatives as its starting
values at #n,. It is worth noting that inside the
boundary layer, equation (34) contains eigenfunctions
which grow exponentially as (Ra,}'"®, which become
singular for large Ra,. Thus, in order to maintain the
linear independence of the two numerical solutions at
large Ra,, Kaplan’s filtering technique [14,15] has
been incorporated. The procedures involve the in-
tegration of F®() during the first path, and the filter
applied at discrete steps of the second path for the
integration of F M (p).

The complete solution to the linear equation (34)isa
superposition of F*'(n) and F*(x) which is given by

F(n) = FPn)+ CFPp), (38)
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where the coefficient of F)(n) has been arbitrarily set
equal to one. The constant C can be determined by
imposing equation (38) on the boundary conditions at
the wall, to give

FO0)+ CFP0) =0 (39)
D*FM(0)+ CD*F(0) = 0, (40)
where the values of F(0), F@(0), D?F)0) and
D?F®(0) are already obtained from the numerical
integration. Equations (39) and (40), in general, will
not be compatible unless Ra, is the eigenvalue. For a
systematic iteration of Ra,, we will first solve for C
from equation (39) and substitute into equation (40) to
give
F10)
(2)(0)
which will not be satisfied unless Ra, is the eigenvalue.
If we denote the residue as

D2F(0) — D2F®(0) = 41)

F0)
F(Z)(O)

then, a systematic iteration of Ra, can be made by the
Newton—Raphson iterative method until the con-
dition A(Ra,) =0 is satisfied to within acceptable
accuracy.

A(Ra,) = D*F0) — D2F(0),

(42)

IV. RESULTS AND DISCUSSION

Consideration is first given to the neutral stability
curves for selected values of m as shown in Fig. 2, where
the eigenvalue Ra, is plotted against dimensionless
wave number k. The values of the critical Rayleigh
number (Ra¥)and its associated wave number (k*) are
presented in Fig. 3 and Table 1, where it is shown that
the values of Ra¥ and k* increase as the value of m is
increased. It follows that m = O represents the most
unstable situation which is intuitively obvious since m
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Fi1G. 2. Rayleigh numbers as a function of spanwise wave
number at neutral stability.
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FI1G. 3. Critical Rayleigh numbers and associated wave
numbers as a function of m.

= 0 corresponds to a step increase in wall temperature
and thus is more susceptible to instability than other
values of m which have a weaker rate of development in
space of the ultimately unstable base state. A separate
computation omitting the term u, (6 T;/0x) in equation
(24) was also carried out. It was found that the critical
Rayleigh numbers thus obtained were lower than
those reported in Table 1, with the wave numbers
essentially unchanged. Thus, the term u, (0T, /dx) has a
stabilizing effect on the flow field as is expected.

Table 1. Critical Rayleigh numbers
and the associated wave numbers

m Ra¥ k*

0.0 33.47 0.692
0.5 59.78 0.815
1.0 83.46 0.934
1.5 106.23 1.041
20 128.63 1.141

Attention is next directed to the disturbances at the
onset of instability. It can be shown that the dimen-
sionless disturbances at the onset of instability are
given by

=§_ - (R )2/3DFel(az+ﬂ/2)

E—x———(R )2/3kFelaz
o4

m—2
U= a = (Ra )”{( 3 )kDZF

2m
(*3—)’”} (43)
IR L
ot k ’
y El—//— _ (Ra )1/3Fel(az+ﬂ/2)
o
— Tl — iaz
0 =Ax’" =0e
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Fi6. 5. The eigenfunction L * for different values of m.

which show that U and P are of the same order, both of
which are smaller than ¥ and W. To plot the disturbed
quantities vs #, it is convenient to normalize equation
(43) with respect to their maximum values. It follows
that normalized amplitudes W*, V* U*, P*, ¥* and
0* are given by

DF
* = pk o~
W IDFlps
VE = P 41:7 (44)
|Flmax ’
U* =~ _(m=2D*F+(2m—1)DF
T {m—=2D?*F + (2m—1)DF| sy’
and
H* = ®/®mzlx'

Since the amplitudes W*, V* P* W* and 0* vs # have
similar shapes for different values of m, only the
representative profiles for m = 1 are plotted in Fig. 4.
However, the amplitude U* as a function of  changes

drastically with m and are therefore plotted separately
in Fig. 5. 1t is noted from Figs. 4 and 5 that while the
values of V* and W* are always positive, the values of
W* (or P*) and U* changes {rom positive to negative
at# = aand y = b respectively. The change of signs of
W* and U* simply indicate a change invthe phase angle
of . Furthermore, it is noted in the figures that all the
disturbances at the onset of instability are confined
within the boundary layer of the basic flow which is
consistent with the assumption of the bottling effect
discussed earlier. The location of y for which W, and
(% . occur are also of some interest. It is shown that the
value of iy at which 8%,, occurs is smaller than that of
Wihax:

It will also be of interest to examine the phase angles
of disturbances (in the spanwise direction) relative to
. Equations {43) show that { and V' are always
ahead of ¥ by a phase angle of n/2. The phase angles of
W, P and U with respect to ‘¥ however depends on the
value of . Near the wall where # < a, W is in phase
with ¥ : P is behind ‘¥ by a phase angle of n/2 ;and U'is
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{v
Win<a)

(5]

v
{Pw(u) P(n>a)
Uln<b)

U{n>b)

Win>a)

FiG. 6. Phase angles between disturbances form = 1.

ahead of y by a phase angle of n/2. Near the edge of the
boundary layer where # > b, W, P and U change their
phase angle by . The variations of disturbances along
spanwise direction at a constant y at the onset of
instability are sketched in Fig. 6. The corresponding
streamlines and isotherms for the secondary flow at the
onset of instability are indicated as solid and dashed
lines in Fig. 7.
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FiG. 7. Secondary flow streamlines and isotherms for m = 1.

To summarize, the analysis given here predicts the
distance from the leading edge at which the buoyancy
layer first becomes unstable. The form of the instability
is a roll vortex with a weak down-stream dependence.
The wave length of the roll scales with the local depth
of the thermal layer.
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INSTABILITE DE L’ECOULEMENT DE CONVECTION NATURELLE SUR UNE
SURFACE HORIZONTALE ET IMPERMEABLE DANS UN MILIEU POREUX

Résumé—Une analyse linéaire de stabilité est faite pour déterminer les conditions d’apparition de tourbillons
longitudinaux dans la convection naturelle dans un milieu poreux adjacent a une surface chaude horizontale
avec une température de paroi prescrite. L'état de base est supposée étre I'écoulement de couche limite induite
qui est caractérisé¢ par un profil de température non linéaire. On prend en considération la composante
transversale de la vitesse de I'écoulement de base ainsi que la dépendance des champs de vitesse et de
température, pour établir les équations de perturbation tridimensionnelle de I'écoulement secondaire. Le
probléme résultant des valeurs propres est résolu numériquement et les amplitudes et les phases des
perturbations sont données ainsi que les lignes de courant et les isothermes de I'écoulement secondaire a
Iapparition de l'instabilité. On discute de I'effet de la distribution de la température pariétale sur le nombre de
Rayleigh et sur le nombre d’onde associé.
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INSTABILITAT EINER FREIEN KONVEKTIONSSTROMUNG UBER
EINER WAAGERECHTEN, UNDURCHLASSIGEN FLACHE IN EINEM
POROSEN MEDIUM

Zusammenfassung—Es wurde eine lineare Stabilitdtsanalyse durchgefiihrt, um die Bedingungen zu
bestimmen, die kennzeichnend sind fiir den Beginn von Langswirbeln in einer freien K onvektionsstrémung
in einem porosen Medium, das an eine waagerechte, beheizte Fliche mit vorgegebener Wandtemperatur
angrenzt. Als Grundzustand ist die stationdre, zweidimensionale, auftriebsinduzierte Grenzschichtstrénung
angenommen, die durch ein nichtlineares Temperaturfeld charakterisiert ist. Sowohl die Querkomponente
der Geschwindigkeit der Grundstromung als auch die Abhingigkeit zwischen Grundstrémung und
Temperaturfeld in Stromungerichtung werden beim Ableiten der dreidimensionalen Stromungsgleichungen
fur die Sekundarstromung berucksichtigt. Das resultierende Eigenwert-Problem mit variablem Koeffizien-
ten wird numerisch gelost und sowohl die Amplituden und Phasenwinkel der Storungen als auch die
Stromlinien und die Isothermen der Sekundarstromung bei Beginn der Instabilitat werden ermittelt. Der
Einflug der Wandtemperaturverteilung auf die kritische Rayleigh-Zahl und die entsprechend zugeordnete
Wellenzah!l werden diskutiert.

HEYCTONUYUBOCTb CBOBOAHOKOHBEKTUBHOTI'O TEHEHWS HA
FOPU3OHTANILHON HEMMPOHULIAEMON MOBEPXHOCTU B IMMTOPUCTOM TEJIE

Annoranust — [MposeleH JHHERHLIA AHATIH3 YCTOMYMBOCTH CBODOIHOKOHBEKTHBHOTO [eHCHMs V1A
olIpeencHus yC/IOBUI BO3HUKHOBEHNS OPOIOJIbHBIX BUXPEH B MOPHCTOM Cpesie Ha FOPH3IOHTaILHON
HArpeToil MOBEPXHOCTH ¢ 3aJdaHHOW TemmepaTypoit. IMpennonaraercs cTauMoHapHOE ABYXMepHOE
¢BOGOMHOKOHBEKTHBHOE TEYEHHE B NOTPAHUYHOM CIIO€ B MOPHUCTOM Cpelie ¢ HETHHEHHbLIM npoduiIem
TemrepaTyp. IIpu BbIBOAE TpPeXMepPHbIX YPABHEHHH BO3IMYILEHHS TS BTOPHMYHOTO TEUEHWA Y4UThl-
BAlOTCH TIONEPEYHAs KOMIIOHEHTA CKOPOCTH OCHOBHOrO MOTOKA, a Takke 3aBUCHMOCTh Mol
OCHOBHOTO TOTOKA M TEMIEPATYPbl OT PACCTOSHUA BOOAbL noToka. [JdaéTcs YHCEHHOe peuleHHe
TNOJIy4EHHOH 3afauM Ha coOCTBEHHblE 3HAYEHUA ¢ nepeMedHbiMu KodhduuuenTamu. ITpusenersi
AMIUIMTY /I M (a30Bble YT/Ibl BO3MYLLEHHMH, a TakkKe THHUK TOKa H W30TEPMbl BTOPHYHOTO TE4EHHUS
HpHM BO3IHMKOBEHMM HEyCTOM4MBOCTH. OOCYXIAeTCs BIMAHME PACOPENENEHNS TeEmMIEpaTypbl Ha
CTEHKE Ha KPUTHYECKOE YMCIO Penest ¥ cOOTBETCTBYIOLIEE BOJHOBOE YHCIIO.



