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Abstract-A linear stability analysis is made to determine the conditions marking the onset of longitudinal 
vortices in free convective flow in a porous medium adjacent to a horizontal heated surface with a prescribed 
wall temperature. The basic state is assumed to be the steady two-dimensional buoyancy-induced boundary- 
layer flow which is characterized by a non-linear temperature profile. The transverse velocity component of 
the basic flow as well as the streamwise dependence of the basic flow and temperature fields are taken into 
consideration when deriving the three-dimensional perturbation equations for the secondary flow. The 
resulting variable coefficient eigenvalue problem is solved numerically, and the amplitudes and phase angles 
of the disturbances, as well as the streamlines and isotherms of the secondary flow at the onset of instability 
are shown. The effect of wall temperature distribution on the critical Rayleigh number and its associated 

wave number are discussed. 

NOMENCLATURE 

wave number ; 
constant in wall temperature relation; 
superposition constant; 
dimensionless base state stream function; 
dimensionless disturbance stream function; 
wave number ; 
Darcy permeability; 
exponent on wall temperature relation; 
pressure ; 
local Rayleigh number ; 
time ; 
temperature; 
Darcys’ velocity component in x direction; 
Darcys’ velocity component in y direction ; 
Darcys’ velocity vector ; 
Darcys’ velocity component in z direction; 
coordinate in downstream direction ; 
coordinate normal to bounding surface ; 
coordinate tangent to bounding surface. 

Greek symbols 

a, effective thermal diffusivity; 

B, coefficient of thermal expansion ; 

‘r’> volumetric heat capacity of the fluid to that 
of the saturated porous medium ; 

PT fluid viscosity ; 
% similarity variable ; 

*On sabbatical leave from the Department of Mechanical 
Engineering, University of Hawaii, Honolulu, HI 96822, 
U.S.A. 

0, dimensionless temperature ; 
Y stream function; 

0, growth constant ; 

PT fluid density. 

1. INTRODUCXION 

IT HAS been established that when a fluid layer is 
heated from below, the presence of the buoyancy force 
component normal to the surface gives rise to vortex 
instability under critical conditions. The appearance of 
longitudinal vortices (or rolls) have been observed by 
Chandra [l], as well as by Akiyama, Hwang and 
Cheng [2] for forced convection between differentially 
heated parallel plates, and by Sparrow and Hussar [S] 
as well as by Lloyd and Sparrow [4] for natural 
convection on inclined heated surfaces. Motivated by 
these experimental investigations, a number of linear 
stability analyses have recently been performed to 
study the conditions marking the onset of longitudinal 
vortices in both free [S-S] and forced [g-11] con- 
vection in a fluid layer heated from below. 

The occurrence of streamwise oriented vortices in a 
porous medium between two parallel inclined plates 
heated from below has been observed by Bories and 
Combarnous [12] who also performed a stability 
analysis which shows that the onset of secondary flow 
in the form of longitudinal vortices occurs when 
Ra cos 4 2 4n2, where q5 is the inclined angle of the 
plates with respect to the horizontal and Ra is the 
Rayleigh number based on the distance between the 
plates. In Bories and Combarnous’ analysis, both the 
temperature and velocity profiles of the basic flow are 
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linear functions of distance normal to the plates and 
independent of streamwise direction. 

It is the purpose of this paper to study the related 
problem of onset of vortex instability in free cell- 
vection Row in a porous medium adjacent to a heated 

horizontal surface where the prescribed wall tempcra- 
ture is a power function of distance. The basic 

undisturbed state is assumed to be the steady 

buoyancy-induced boundary layer flow which 1s char- 

acterized by a non-linear temperature profile [ I3 ] The 
full three-dimensional disturbance equations are sim- 
plified on the basis of the so-called “bottling cn‘ects”. 

i.e. the disturbances at the onset of instabilit> arc 
contained within the boundary layer of the basic tknv 
[6]. The resulting eigenvalue problem k sohed 

numerically by the fourth-order Runge- Kutta tnethod 
incorporated with Kaplan filtering [14. 151 to main- 

tain the linear independence of the two eigenfunctions. 

The amplitudes and phase angles of the disturbances, 
as well as the streamlines and isotherms of the 

secondary flow at the onset of instability are shown. 

The effects of wall temperature distribution on the 
critical Rayleigh number and its associated wave 
number are discussed. 

II. I.INEAK STABILITY .ZNALYSIS 

Consideration IS given to the problem of free 
convection in a porous medium adjacent to an in- 

permeable heated surface with the prescribed wall 
temperature of the form T,.(.Y) == T, + Au”‘. where r,, 

and T, are temperatures at the wall and at intinitl : :I 
and m are constants which are positive and real. The 

coordinates of the problem are depicted in Fig. I M here 

x and z are the coordinates that lie on the horitontal 
plane and J’ is the vertical coordinate pointing outward 

toward the porous medium. If we assume that (1 ) the 

Y 

” T, = T, (x<O) T, >T, (x,0) 

I;rc;. 1. Detinltion sketch. 

convective fluid and the porous medium are every- 

where in local thermodynamic equilibrium: (2) pro- 
perties of the fluid and the porous medium, such as 
thermal conductivity, specific heats, viscosity, and 
permeability are constant ; (3) the Boussinesq approxi- 
mations are employed, and (4) Darcy’s law is applic- 
able, the governing equations for convective heat 
transfer in a porous medium are: 

where the subscrIp “7 .’ dcnotcs the conditIona at 
infinite. 

A lkear stability analysis ~111 now be made by 

decomposing the temperature, velocity. and pressure 
distribution into basic undisturbed quantities and 
infinitesimal disturbed quantities a> 

Tc\.L.::.I) = 7;,(.\.\,)* IjlY.r:;.rl 

[‘1_\.I‘.-_.fI =/‘o(“,l)i~‘,t\.?.-,rJ. 

U(.\-.V.:,/) = lI,l.\.i~) +U,r.:-.~‘,r.il. i4) 

1 (\.J-.-_.rI = r,,i.Y,l++ :‘;{,.\.:_r). 

I\‘(.\. I’.:. fI = \c,I\,1.:.ij. 

where the three dimensional disturbances are denoted 

by the subscript “1” and the two dimensional basic 
quantities are denoted by the subscript “0”. It will be 

assumed that the undisturbed basic state is that of 
steady two-dimensional buoyancy-induced boundary 

layer flow whose solution is given by Cheng and 
Chang [13] to be of the form 

where Rtr, = Kp ~ q/l(T, - 7“ ).X,/IX is the Rayleigh 
number in a porous medium, and q is a similarity 
variable. As shown in [13]. the dimensionless tempera- 

ture On(u) and stream function f;,(u) are solutions of 

with boundary conditions given h! 

fIo(0) - I, /cr(C)) -= 0. (9) 

o,, ( % ) z 0. /,,I / j :~ 0. II(l) 

where the primes on basic tlow quantities indicate 

derivatives with respect to rl. 
Substituting equation (4) into equations (1) (J), 

subtracting out the governing equations for the basic 



Instability of free convection flow over a horizontal impermeable surface 1223 

where all terms arising from the transverse velocity 
component of the basic flow as well as the x- 
dependence of the basic flow and temperature fields 
have been retained. 

From the related work of vortex instability in free 
convection about an inclined plate, it has been shown 
that small disturbances at the onset of instability are 
confined within the boundary layer of the basic flow 
because of the transverse inward-directed velocity 
component of the basic flow which entrains fluid on 
the plate. This has been termed the “bottling effect” by 
Haaland and Sparrow [6]. If the assumption of 
bottling effects are invoked, some of the terms in 
equations (ll)-( 15) can be neglected. This can be 
shown by first converting the equations in dimension- 
less form and then expressing the resulting equations 
in terms of the stretched boundary layer coordinates of 
the basic flow. We want to give the highlights of this 
argument, because it is subtle and does not seem to 
have been carefully detailed in the literature. The 
dimensionless forms of (1 1 )-( 15) are 

gL+%+!+), 
aY 

8th 
ax = -u1, 

ah 
- -v,+RT,, c?y- 

(16) 

(17) 

(18) 

(19) 

where R is a Rayleigh number based upon a fictitious 
length which is of no consequence in the resulting 
similarity solution. For the base state, we have for large 
R [13], variations that are asymptotically 

a a a 
ay" 

R1/3_ . - w 1 ; a0 _ R113; a0 N R2j3. 
ay' ax 

Now since u0 < 0, any small disturbance will be 
convectively held (“bottled”) on the plate, so that for 
vortex-like disturbances with wave length of the same 
scale as the base state thermal depth, we have for 
bottled disturbances, 

a a a R"3_. a a 
ay' 2%" az' Z"" 

R"3_. 

Equations (16))( 19) become 

au, awl - 
aY+E+R- 

1/3au, = 0, 
ax (164 

!5_ 
ax - -u1, (174 

R113% z.z _o,+RT,, ay (18a) 

R'i35 = _w1, 
az Wa) 

“.M.T.-_D 

We wish to use (16a)-(19a) to estimate the relative 
orders of the convective terms in equation (20). 
Equation (16a) establishes that vi N wi for a con- 
vective roll, and (19a)establishes Pr - R-‘/3~1. Now 
a key point is that if there is an O(1) x-variation in 
disturbance quantities, then equation (17a) implies ur 
- R-“3v,. There is necessarily this x-dependence 
through the variable coefficients in equation (20) 
involving the base state. Thus Pr = P,(x, Y,Z), and a1 
# 0. The convective terms in equation (20) have the 
estimates 

aT1 
U”ax 

_ ~2’3 !% 
ax1 

37-0 _ R”3u aT, 

1 ay' 

The first two terms are evidently of the same order. The 
next two estimates depend upon the ratio of ur to T,, 
which is in fact related to the actual solution to the 
eigenvalue problem. We have retained all four terms in 
what follows. The important conclusion from (16a) 
and (17a)-( 19a) is that 

au1 ; dwl - 0 

ay aZ (16b) 

to lowest order, implying the existence of a disturbance 
stream function defined such that 

ah wl 
U’=-zg WI=%. (21) 

We revert back to dimensional variables in order to 
properly develop the similarity solution. Equations 
(12)-( 15) in terms of stream function are 

2 _ a2+1 
az axay' 

:(3i” j 

(22) 

_+?L 
(322 

-PmP?$, (23) 

aT, aT, 
YC’t+u~~+vor,+q~-~~ 

ay aZ ay 

= CC&+$), (24) 

where 

and 

It should be noted that the term u,(aT,/ax) is retained 
in equation (24) since although iYT,/ax is small, 
u,,(aT,/ax) is of the same order of magnitude as other 
convective terms in equation (24). 
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Hwang and Cheng [5] and Haaland and Sparrow 
[6] have neglected the term u,(i;7’,/ax) in their ana- 
lyses of onset of stability in a viscous fluid because all 

the disturbances are assumed to be independent of x. 

In fact the disturbance has a weak .x dependence, which 
coupled with the strong convective base flow uO, leads 
to retention of this term at lowest order. 

Experimental evidence shows that small distur- 
bances in the form of longitudinal vortices are periodic 

in the spanwise direction. Thus, we assume that the 
three-dimensional disturbances are of the form 

I/I, = $(.y.r)e” ’ O’, (75a) 

11, = B(s.y)e’“’ “‘, (Zb) 

r, = ‘fix r)e’“’ 4 ril 
3. (25c) 

where a is real and represents the spanwise periodic 

wave number of the disturbances and o is the growth 
factor. It is difficult to prove that (r is real, i.e. that the 

onset is stationary. However, we assume here, in 
analogy with many other convective instabilities, that 

0 is real. Substituting equations (25) into equations 
(22)-(24) the equations for neutral stability are 

(26) 

To recast equations (26)-(28) in dimensionless 
form, the following dimensionless quantities will now 

be defined 

where F and 0 are functions of ‘1 only. Equations 

(26))(28) in terms of the dimensionless variables are 

(D’ - k2)F = - R&“k@, (30) 

(D2 - k2)0 

x [(m-2)@F+(2m- l)DF]. (31) 

with the boundary conditions given by 

F(0) = O(0) = 0, (32) 

F(X) = O(m) = 0, (33) 

where D = d/dq is the differentiation of the disturbed 
quantities with respect to 4. Note that in developing 
these equations we have eliminated f in favor of the 
stream function via equation (26). Substitution of 

equation (30) into equation (31) leads to 

(D2_~~~2~+)71:!.,~~D(D2-I\~~I. 

-~~f~(D2-k2)F+(Ru,)2:3H~k21; 

x [(WI -2)@F i- (2rrr -- 1 )DF] = 0, (34) 

with its boundary conditions given by 

F(0) = D’F(0) = 0, (35) 

F(a) = D’F‘(-x I = 0. (36) 
For a given value of m and i;, equation (34) with 

homogeneous boundary conditions (35) and (36) 
constitutes an eigenvalue problem where Ra, can be 

regarded as the eigenvalue. 

111. NUMERICAL SOLUTION OF THE 
EIGENVALUE PROBLEM 

The eigenvalue problem can best be solved numeri- 
cally by integrating equation (34) inward from 9 ---t x 

(the edge of the boundary layer of the base flow) to u 
= 0 (at the wall). To start the numerical integration at 
‘? + IX asymptotic solutions for equation (34) will 
now be obtained. It is noted that equation (34) at large 

q is simplified to the constant coefficient type and its 
solutions are of the form 

F’l I AlI 
r-e 1 

F’,” _ e [<I +,ti. -h-! \tj 

F’“’ kfl‘ (37) 
,le, 

p-w _ eT”, * 
ikJ’*kq’~l,!,* 

where u iu = &( x)(m + 1)/6 is a positive constant and 
qa is some large value of q. Since the two exponential 
growing modes will not satisfy the boundary con- 

ditions at infinity, they must be discarded, and only the 
two decaying modes, F”’ and F”’ will be 
retained. Using F!$ = e-kez and its derivatives as 
starting values at some large value of q (taken as qX 

= 8 in the present study), equation (34) is integrated 
inward numerically by the fourth-order Runge-Kutta 
method to IJ = 0. The numerical solution thus ob- 
tained is denoted by F’“(q). Similarly, a second 
numerical solution is obtained for F’*‘(q) using F’;” 
= e--[“,* “i +k’)“‘l~, and its derivatives as its starting 
values at q,, It is worth noting that inside the 
boundary layer, equation (34) contains eigenfunctions 
which grow exponentially as (Ra,x)l!“. which become 
singular for large Ra,. Thus, in order to maintain the 
linear independence of the two numerical solutions at 
large Ra,, Kaplan’s filtering technique [14,15] has 
been incorporated. The procedures involve the in- 
tegration of F”‘(q) during the first path, and the filter 
applied at discrete steps of the second path for the 
integration of F’“(q). 

The complete solution to the linear equation (34) is a 
superposition of F(‘)(q) and F”‘(q) which is given by 

F(q) = F”‘(q) + CFc2’(v), (381 
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where the coefficient of F(‘)(r]) has been arbitrarily set 
equal to one. The constant C can be determined by 
imposing equation (38) on the boundary conditions at 
the wall, to give 

F”‘(O) + CF’2’(0) = 0 9 (39) 

PF”‘(0) + CDZF’2’(0) = 0, (40) 

where the values of F(‘)(O), Fc2)(0), D’F(‘)(O) and 
D2Ft2)(0) are already obtained from the numerical 
integration. Equations (39) and (40), in general, will 
not be compatible unless Ra, is the eigenvalue. For a 
systematic iteration of Ra,, we will first solve for C 
from equation (39) and substitute into equation (40) to 
give 

F”‘(O) 
PF”‘(O) - (2) DF2’(0) = 0, 

F (0) 
(41) 

which will not be satisfied unless Ra, is the eigenvalue. 
If we denote the residue as 

A(MJ = D2F’“(0) - Fc2j(o) 
F”‘(O) g2Fc2’(()), (42) 

then, a systematic iteration of Ra, can be made by the 
Newton-Raphson iterative method until the con- 
dition A(Ra,) = 0 is satisfied to within acceptable 
accuracy. 

IV. RESULTS AND DISCUSSION 

Consideration is first given to the neutral stability 
curves for selected values of m as shown in Fig. 2, where 
the eigenvalue Ra, is plotted against dimensionless 
wave number k. The values of the critical Rayleigh 
number (Ra,*) and its associated wave number (k*) are 
presented in Fig. 3 and Table 1, where it is shown that 
the values of Ra: and k* increase as the value of m is 
increased. It follows that m = 0 represents the most 
unstable situation which is intuitively obvious since m 
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Rayleigh numbers as a function of spanwise wave 

number at neutral stability. 

2oOil-l o.5 2.0 

m 

FIG. 3. Critical Rayleigh numbers and associated wave 
numbers as a function of tn. 

= 0 corresponds to a step increase in wall temperature 
and thus is more susceptible to instability than other 
values of m which have a weaker rate of development in 
space of the ultimately unstable base state. A separate 
computation omitting the term u,(aT&x) in equation 
(24) was also carried out. It was found that the critical 
Rayleigh numbers thus obtained were lower than 
those reported in Table 1, with the wave numbers 
essentially unchanged. Thus, the term u,(aT,/ax) has a 
stabilizing effect on the flow field as is expected. 

Table 1. Critical Rayleigh numbers 
and the associated wave numbers 

m Ra: k* 

0.0 33.47 0.692 
0.5 59.78 0.815 
1.0 83.46 0.934 
1.5 106.23 1.041 
2.0 128.63 1.141 

Attention is next directed to the disturbances at the 
onset of instability. It can be shown that the dimen- 
sionless disturbances at the onset of instability are 
given by 

vsxu’= (Ra 

CI 
x 

)+F,i.z 

+(2m-1) DF 

3k 1 
eiaz 

p &fL = WY3 DFei’““+n’ 

w k 

(43) 
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FIG. 4. The eigenfunclions for )!f = I 
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FIG. 5 The eigenfunctmn (, * for different mlues of rn. 

which show that U and P are of the same order, both oi 

which are smaller than V and W. To plot the disturbed 
quantities vs 1, it is convenient to normalize equation 
(43) with respect to their maximum values. It follows 

that normalized amplitudes W*, L’*. Cl*, P*, Y* and 

O* are given by 

F 
v* = YJ* = Fj,,,’ (44) 

(m-2)qD2F+(2m-1)DF 
I/* = __~_____~~~ 

I(m-2)gD2F+(2m- I)DFl,,,’ 

and 

H* = o/o,,,,. 

Since the amplitudes W*, I/*, P*, Y* and O* vs 4 have 
similar shapes for different values of m. only the 
representative profiles for m = 1 are plotted in Fig. 4. 
However, the amplitude U* as a function of q changes 

drastically with m and are therefore plotted separately 
in Fig. 5. It is noted from Figs. 4 and 5 that while the 
values of l’* and Y* are always positive. the values of 
W* (or P*) and U* changes from positive to negative 
at tf = N and ‘1 = h respectively. The change of signs of 
W’* and U* simply indicate a change in the phase angle 

of 7-t. Furthermore, it is noted in the figures that all the 
disturbances at the onset of instability are confined 
within the boundary layer of the basic Aow which is 
consistent with the assumption of the bottling elfect 
discussed earlier. The location ofq for which ‘I’&, and 
O&,, occur are also of some interest. It is shown that the 
value of 17 at which Og,, occurs is smaller than that of 

YL. 
It will also be of interest to examine the phase angles 

of disturbances (in the spanwise direction) relative to 
Y. Equations (43) show that 0 and 1’ are always 

ahead of Y by a phase angle of 7112. The phase angles of 
W, P and U with respect to Y however depends on the 
value of q. Near the wall where q q: a, W is in phase 
with Y : P is behind Y by a phase angle of n/2 : and C’ i* 
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FIG. 6. Phase angles between disturbances for m = 1. 

ahead of $ by a phase angle of 7r/2. Near the edge of the 

boundary layer where r] > b, W, P and U change their 

phase angle by n. The variations of disturbances along 
spanwise direction at a constant y at the onset of 
instability are sketched in Fig. 6. The corresponding 
streamlines and isotherms for the secondary flow at the 
onset of instability are indicated as solid and dashed 
lines in Fig. 7. 5. 

6. 

-lr -2c 0 rr 7r 

2 2 

oi- 

FIG. 7. Secondary flow streamlines and isotherms form = 1. 

To summarize, the analysis given here predicts the 
distance from the leading edge at which the buoyancy 
layer first becomes unstable. The form of the instability 
is a roll vortex with a weak down-stream dependence. 
The wave length of the roll scales with the local depth 
of the thermal layer. 
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INSTABILITE DE L’ECOULEMENT DE CONVECTION NATURELLE SUR UNE 
SURFACE HORIZONTALE ET IMPERMEABLE DANS UN MILIEU POREUX 

Rbum&Une analyse lit&ire de stabilite est faite pour determiner les conditions d’apparition de tourbillons 
longitudinaux dans la convection naturelle dans un milieu poreux adjacent a une surface chaude horizontale 
avec une temperature de paroi prescrite. L’itat de base est supposed Ctre I’ecoulement de couche limite induite 
qui est caractirise par un profil de temperature non lit&ire. On prend en consideration la composante 
transversale de la vitesse de l’ecoulement de base ainsi que la dependance des champs de vitesse et de 
temperature, pour itablir les equations de perturbation tridimensionnelle de l’tcoulement secondaire. Le 
probleme resultant des valeurs propres est resolu numtriquement et les amplitudes et les phases des 
perturbations sont donntes ainsi que les lignes de courant et les isothermes de l’ecoulement secondaire a 
I’apparition de l’instabilite. On discute de l’effet de la distribution de la temperature pariitale sur le nombre de 

Rayleigh et sur le nombre d’onde associe. 
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INSTABILITAT EINER FREIEN KONV~KTIONSSTI+~~UNG EMBER 
EINER WAAGERECHTEN, Ui’JDURCHLASSIGEN FLACHE IN EINEM 

POROSEN MEDIUM 

Zusammenfassung- Es wurde eine lineare Stabilit8tsanalyse durchgefiihrt, urn die Bedingungen zu 
bestimmen, die kennzeichnend sind fiir den Beginn von LLngswirbeln in einer freien Konvektionsstriimung 
in einem pordsen Medium. das an eine waagerechte, beheizte Flsche mit vorgegebener Wandtemperatur 
angrenzt. Als Grundzustand ist die stationsire, rweidimensionale. auftriebsinduzierte Grenzschichtstriinung 
angenommen, die durch ein nichtlineares Temperaturfeld charakterisiert ist. Sowohl die Querkomponente 
der Geschwindigkeit der Grundstromung als such die Abhlngigkeit zwischen Grundstrijmung und 
Temperaturfeld in Str6mungerichtung werden beim Abieiten der dreidimensionalen StrOmungsgleichungen 
for die Sekundarstr6mung berticksichtigt. Das resultierende Eigenwert-Problem mit variablem Koefiien- 
ten wird numerisch gel6st und sowohl die Amplituden und Phasenwinkel der Stfxungen als such die 
Stromlinien und die Isothermen der SekundBrstr6mung bei Beginn der Instabilitat werden ermittelt. Der 
Einflub der Wandtemperaturverteilung auf die kritische Rayleigh-Zahl und die entsprechend zugeordnete 

Wellenzahl werden diskutiert. 

HEYCTOfi’-IMBOCTb CB060~HOKOHBEKTMBHOI-0 TEqEHMR HA 
I-OPM30HTAJIbHOfi HEnPOHMUAEMOti nOBEPXHOCTM B IIOPMCTOM 7EJIE 

AmoTaum- npOBcneH ;IMH&lHbIti aHa.?M3 yCTO~YMBOCTM CB060,IHOKOHBeKTMBHOIO lcYeHHH ILV, 

OnpeIIe~eHPiR yCJlOBklfi B03HMKHOBcHMR npODOJlbHblX BMXpcti B nOpRCTOfi Cpe,W Ha TOpM30HTaJIbHOfi 

HarpeToR noBepxHocTkf C 3artaHHoR Termeparypok IlpennonaraeTcfl craukioHapHoe itsyxMepHoe 

CBO6O~HOKOHBeKTMBHOeTeYcHIle B nO~paHM'iHOMCJlOe B nOpMCTOii CpeLtec HeJIctHcfiHblV FlpO+HneM 

TeMnepaTyp. npl4 BblBO,Ie TpeXMepHblX ypaBHeHrtti BO3MylUeHWZ+ LUIR BTOpH'iHOrO Tc'ieHMIi yYMTbl- 

Ba,OTCR nOnepeYHaR KOMnOHcHTa CKOPOCTS OCHOBHOrO nOTOKa, a Tartme 3aBWCHMOCTb nOsleii 

oCHoBHOr0 nOTOKa M TcMncpaTypbl OT PaCCTORHMR BIlOnb IlOTOKa. fla'?TCR YMCncHHOe peUIeHHe 

nonyYeHHOfi 3anaW Ha CO6CTBeHHble 3Ha',cHHR C nepeMeHHblMM K03~@)AUHeHTaM~. rIpHBcneHb1 

aMn,,aTy~b, II @a30Bblc yr.Qb, R03MyU,eHMji, a TaKxe RAHMM TOKa M M30TepMblBTOpM'iHO~O TeYeHMI( 

npa Bo3HHKOBeHMM HeycToRwmocTw. OGcymnaeTc8 BnHxHMe pacnpenenetm TeMnepaTypbl Ha 

CTeHKe HaKpMTM'feCKOc'iMCJlO knen M CoOTB~TCTBy,OLUccBOJ,HOBOe 9MCn@. 


